
Theoretical Framework for Comparing
Several Stochastic Optimization Approaches

James C. Spall, Stacy D. Hill and David R. Stark

The Johns Hopkins University
Applied Physics Laboratory
11100 Johns Hopkins Road

Laurel, Maryland 20723-6099 U.S.A.
E-mail: james.spall@jhuapl.edu

Abstract
This paper establishes a framework for formal

comparisons of several leading optimization algorithms,
establishing guidance to practitioners for when to use or not
use a particular method. The focus in this paper is five
general algorithm forms: random search, simultaneous
perturbation stochastic approximation, simulated annealing,
evolutionary strategies, and genetic algorithms. We
summarize the available theoretical results on rates of
convergence for the five algorithm forms and then use the
theoretical results to draw some preliminary conclusions on
the relative efficiency. Our aim is to sort out some of the
competing claims of efficiency and to suggest a structure
for comparison that is more general and transferable than
the usual problem-specific numerical studies.
Keywords: Stochastic optimization; rate of convergence;
random search; simultaneous perturbation stochastic
approximation (SPSA); simulated annealing; evolutionary
computation; genetic algorithms. 1

1. INTRODUCTION
To address the shortcomings of classical deterministic

algorithms, a number of powerful optimization algorithms
with embedded randomness have been developed. The
population-based methods of evolutionary computation are
only one class among many of these available stochastic
optimization algorithms. Hence, a user facing a challenging
optimization problem for which a stochastic optimization
method is appropriate meets the daunting task of
determining which algorithm is appropriate for a given
problem. This choice is made more difficult by some
dubious claims that have been made about some popular
algorithms. An inappropriate approach may lead to a large
waste of resources, both from the view of wasted efforts in

This work was partially supported by the JHU/APL IRAD
Program and U.S. Navy Contract N00024-98-D-8124. An
expanded version of this paper is available upon request.

implementation and from the view of the resulting
suboptimal solution to the optimization problem of interest.

Hence, there is a need for objective analysis of the
relative merits and shortcomings of leading approaches to
stochastic optimization. This need has certainly been
recognized by others, as illustrated in recent conferences on
evolutionary computation, where numerous sessions are
devoted to comparing algorithms. Nevertheless, virtually all
comparisons have been numerical tests on specific
problems. Although sometimes enlightening, such
comparisons are severely limited in the general insight they
provide. Some comparisons for noisy evaluations of a
simple spherical loss function are given in Arnold (2002,
Chap. 6); however, some of the competitors were
implemented in non-standard forms, making the results
difficult to interpret for an analyst using a more
conventional implementation. Spall (2003) also has a
number of comparisons (theoretical and numerical) for the
cases of noise-free and noisy loss evaluations. On the other
end of the spectrum are the “No Free Lunch Theorems”
(Wolpert and McReady, 1997), which simultaneously
consider all possible loss functions and thereby draw
conclusions that have limited practical utility since one
always has at least some knowledge of the nature of the loss
function being minimized.

Our aim in this paper is to lay a framework for a
theoretical comparison of efficiency applicable to a broad
class of practical problems where some (incomplete)
knowledge is available about the nature of the loss
function. We will consider five basic algorithm forms—
random search, simultaneous perturbation stochastic
approximation (SPSA), simulated annealing (SAN), and
two forms of evolutionary computation (evolution strategy
and genetic algorithms). The basic optimization problem
corresponds to finding an optimal point θ*:

θ* = , arg min ()L
θ∈Θ

θ

mailto:james.spall@jhuapl.edu

where L(θ) is the loss function to be minimized, Θ is the
domain over which the search will occur, and θ is a
p-dimensional (say) vector of parameters. We are mainly
interested in the case where θ* is a unique global minimum.

Although stochastic optimization approaches other than
the five above exist, we are restricting ourselves to the five
general forms in order to be able to make tangible progress
(note that there are various specific implementations of
each of these general algorithm forms). These five
algorithms are general-purpose optimizers with powerful
capabilities for serious multivariate optimization problems.
Further, they have in common the requirement that they
only need measurements of the objective function, not
requiring derivative information (gradient or Hessian) for
the loss function.

One might ask whether questions of relative efficiency
are relevant in light of the “no free lunch (NFL)” theorems
of Wolpert and Macready (1997) and others. The NFL
theorems state, in essence, that the expected performance of
any pair of optimization algorithms across all possible
problems is identical. In practice, of course, one is not
interested in solving “all possible problems,” as there is
usually some prior information about the problems of
interest and this prior information will affect the algorithm
implementation. Hence, the NFL results may not
adequately reflect the performance of candidate algorithms
as they are actually applied. In other words, some
algorithms do work better than others on problems of
interest. Nevertheless, the NFL results are an important
backdrop against which to view the results here, providing
limits on the extent to which one algorithm can be claimed
as “better” than another.

2. SIMPLE GLOBAL RANDOM SEARCH
We first establish a rate of convergence result for the

simplest random search method where we repeatedly
sample over the domain of interest, Θ ⊆ Rp. This can be

done in recursive form or in “batch” (non-recursive) form
by simply laying down a number of points in Θ and taking
as our estimate of θ* that value of θ yielding the lowest L
value.

To evaluate the rate, let us specify a “satisfactory
region” S(θ*) representing some neighborhood of θ*
providing acceptable accuracy in our solution (e.g., S(θ*)
might represent a hypercube about θ* with the length of
each side representing a tolerable error in each coordinate
of θ). An expression related to the rate of convergence of
the above simple random search algorithm is then given by

 P(∈S(θkθ̂ *)) = 1 − [1 − P(θnew(k) ∈ S(θ*)]k (2.1)

We will use this expression in Section 7 to derive a
convenient formula for comparison of efficiency with other
algorithms.

3. SIMULTANEOUS PERTURBATION
STOCHASTIC APPROXIMATION
The next algorithm we consider is SPSA. This algorithm

is designed for continuous variable optimization problems.
Unlike the other algorithms here, SPSA is fundamentally
oriented to the case of noisy function measurements and
most of the theory is in that framework. This will make for
a difficult comparison with the other algorithms, but
Section 7 will attempt a comparison nonetheless. The SPSA
algorithm works by iterating from an initial guess of the
optimal θ, where the iteration process depends on a highly
efficient “simultaneous perturbation” approximation to the
gradient g(θ) ≡ ∂L(θ)/∂θ .

Assume that measurements y(θ) of the loss function are
available at any value of θ:

y(θ) = L(θ) + noise .
For example, in a Monte Carlo simulation-based

optimization context, L(θ) may represent the mean response
with input parameters θ, and y(θ) may represent the
outcome of one simulation experiment at θ. In some
problems, exact loss function measurements will be
available; this corresponds to the noise = 0 setting (and in
the simulation example, would correspond to a
deterministic⎯non-Monte Carlo⎯simulation). Note that
no direct measurements (with or without noise) of the
gradient of L(θ) are assumed available.

The SPSA procedure is in the general recursive SA
form:

 , (3.1))ˆ(ˆˆˆ
1 kkkkk ga θ−θ=θ +

where is the estimate of the gradient g(θ) at the

iterate based on the above-mentioned measurements of

the loss function and a

)ˆ(ˆ kkg θ

kθ̂
k > 0 is a “gain” sequence. This

iterate can be shown to converge under reasonable
conditions (e.g., Spall, 1992, and Dippon and Renz, 1997,
for local convergence; Maryak and Chin, 2001, for global
convergence). The essential basis for efficiency of SPSA in
multivariate problems is due to the gradient approximation,
where only two measurements of the loss function are
needed to estimate the p-dimensional gradient vector for
any p; this contrasts with the standard finite difference
method of gradient approximation, which requires 2p
measurements.

Most relevant to the comparative analysis goals of this
paper is the asymptotic distribution of the iterate. This was
derived in Spall (1992), with further developments in Chin
(1997), Dippon and Renz (1997), and Spall (2000).
Essentially, it is known that under appropriate conditions,

 kβ/2(− θkθ̂ *) N(µ, Σ) as k → ∞ , (3.2) ⎯⎯ →⎯dist

where β > 0 depends on the choice of gain sequences (ak
and ck), µ depends on both the Hessian and the third
derivatives of L(θ) at θ* (note that in general, µ ≠ 0 in
contrast to many well-known asymptotic normality results
in estimation), and Σ depends on the Hessian matrix at θ*
and the variance of the noise in the loss measurements.
Given the restrictions on the gain sequences to ensure
convergence and asymptotic normality, the fastest
allowable value for the rate of convergence of to θkθ̂ * is

k−1/3. This contrasts with the fastest allowable rate of k−1/2
for gradient-based algorithms such as Robbins-Monro SA.

Unfortunately, (3.2) is not directly usable in our
comparative studies here since the other three algorithms
being considered here appear to have convergence rate
results only for the case of noise-free loss measurements.
The authors are unaware of any general asymptotic
distribution result for the noise-free case (note that it is not
appropriate to simply let the noise level go to zero in (3.2)
in deriving a result for the noise-free case; it is likely that
the rate factor β will also change if an asymptotic
distribution exists). Some partial results, however, are
available that are related to the rate of convergence.
Gerencsér (1999) established that the moments

qq

kE
/1

*ˆ
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ θ−θ converge to zero at a rate of k−1/2 for

any q > 0, when ak has the standard 1/k decay rate. More
recently, Gerencsér and Vágó (2000) established that the
noise-free SPSA algorithm has a geometric rate of
convergence when constant gains ak = a are used. In
particular, for functions having bounded third derivatives,
they show for sufficiently small a,

ˆ
limsup 1 a.s.

k

kk η

∗

→∞

θ − θ
=

for some 0 < η < 1. Gerencsér and Vágó (2000) go further
for quadratic loss functions by specifying η in terms of a
and the Hessian matrix of L. Unfortunately, even in the
quadratic case, η is not fully specified in terms of quantities
associated with L and the algorithm itself (i.e., η depends
on unknown constants).

4. SIMULATED ANNEALING ALGORITHMS
The SAN method (Metropolis et al., 1953; Kirkpatrick

et al., 1983) was originally developed for optimization over
discrete finite sets. The Metropolis SAN method produces a
sequence that converges in probability to the set of global
minima of the loss function as Tk, the temperature,
converges to zero.

Gelfand and Mitter (1993) present a SAN method for
continuous parameter optimization. They obtained discrete-
time recursions (which are similar to a stochastic
approximation algorithm) for Metropolis-type SAN

algorithms that, in the limit, optimize continuous parameter
loss functions.

Furthermore, like SPSA, SAN has an asymptotic
normality result (but unlike SPSA, this result applies in the
noise-free case). Let H(θ*) denote the Hessian of L(θ)
evaluated at θ* and let Ip denote the p × p identity matrix.
Yin (1999) showed that for bk = (b/(kγlog (k1−γ + B0))1/2,

[log (k1−γ + B0)]1/2(ˆ
kθ - θ*) → N(0, Σ) in distribution,

where SH + HTS + (b/a)I = 0.

5. EVOLUTIONARY COMPUTATION:
EVOLUTIONARY STRATEGIES
There are three general approaches in evolutionary

computation (EC), namely Evolutionary Programming
(EP), Evolutionary Strategies (ES) and Genetic Algorithms
(GA). All three approaches work with a population of
candidate solutions and randomly alter the solutions over a
sequence of generations according to evolutionary
operations of competitive selection, mutation and
sometimes recombination (reproduction). The fitness of
each population element to survive into the next generation
is determined by a selection scheme based on evaluating
the loss function for each element of the population. The
selection scheme is such that the most favorable elements
of the population tend to survive into the next generation
while the unfavorable elements tend to perish.

The principle differences in the three approaches are the
selection of evolutionary operators used to perform the
search and the computer representation of the candidate
solutions. EP uses selection and mutation only to generate
new solutions. While both ES and GA use selection,
recombination and mutation, recombination is used more
extensively in GA. A GA traditionally performs
evolutionary operations using binary encoding of the
solution space, while EP and ES perform the operations
using real-coded solutions. The GA also has a real-coded
form and there is some indication that the real-coded GA
may be more efficient and provide greater precision than
the binary-coded GA. The distinction among the three
approaches has begun to blur as new hybrid versions of EC
algorithms have arisen.

Global convergence results can be given for a broad
class of problems, but the same cannot be said for
convergence rates. Both Beyer (1995) and Rudolph
(1997a) examine ES algorithms that include selection,
mutation and recombination. The function analyzed in both
cases is the classic spherical fitness function L(θ) = ||θ||2
whose exact solution is of course known. Convergence
rates based on the spherical fitness function are somewhat
useful, if it is assumed that the sphere approximates a local
basin of attraction. A number of other convergence rate
results are also available for that fitness function, for
example Qi and Palmeiri (1994) for real-valued GA. The
most practically useful convergence rates for EC algorithms
seem to be for the class of strongly convex fitness

functions. The following theorem due to Rudolph (1997b)
is an application of a more general result by Rappl (1989).
The theorem will be the starting place for the specific
convergence rate result that will be used for comparison in
Section 7.

An EC algorithm has a geometric rate of convergence if
and only if E[−L(θ*

kL *)] = O(ηk) where η ∈ (0, 1) is called
the convergence rate. Under conditions, the convergence
rate result for a (1, λ)-ES using only selection and mutation
on a (K, Q)-strongly convex fitness function is geometric
with a rate of convergence

η = (1 – Q2
, pMλ

2)

where Q is a constant, = E[ΒpM ,λ λ:λ]>0, and where Βλ:λ

denotes the maximum of λ independent identically
distributed Beta random variables. The computation of Mλ,p
is complicated since it depends on both the number of
offspring λ and the problem dimension p. Asymptotic
approximations are available and will be shown next.
Assuming p is fixed and λ→ ∞ then ≈ (2 ppM ,λ

−1log

λ)1/2. To extend this convergence rate from a (1, λ)-ES to a
(Npop, λ)-ES, note that each of the Npop parents generate
λ/Npop offspring. Then the convergence rate for the
(Npop, λ)-ES where offspring are only obtained by mutation
is

η ≤ [1 – (2p−1log(λ/Npop))/Q2]

for (K, Q)-strongly convex functions.

6. EVOLUTIONARY COMPUTATION: GENETIC
ALGORITHMS
As discussed in Stark and Spall (2001), it is possible to

cast the GA in the framework of Markov chains. This
allows for a rate of convergence analysis. Consider a GA
with a population size of N. Further, suppose that each
population element is a binary string of length b bits.
Hence, there are 2b possible strings for an individual
population element. Then the total number of possible
populations is given by

pop
(2 1)
(2 1)! !

b

b
NN

N
!+ −

≡
−

.

It is possible to construct a Markov transition matrix Π that
provides the probability of transitioning from one
population of size N to another population of the same size.
This transition matrix is Npop × Npop. An individual element
in the transition matrix can be computed according to the
formulas in Stark and Spall (2001) (see also Suzuki, 1995).
These elements depend in a non-trivial way on the
population size, crossover rate, mutation rate, and number
of elements considered “elite.”

Of primary interest in analyzing the performance of GA
algorithms using Markov chains is the probability of
obtaining a population that contains the optimum ∗θ . Let
πk be an N × 1 vector having jth component, πk(j), equal to
the probability that the kth generation will result in
population j. From basic Markov chain theory,

T
kπ = 1

T
k−π Π = 0

T kπ Π

where π0 is an initial probability distribution.
The stationary distribution of the GA is then given by

0lim limT T T
k

k k→∞ →∞

kπ ≡ π = π Π .

Further, under standard ergodicity assumptions for
Markov chains, π satisfies T Tπ = π Π . This equation

provides a mechanism for solving directly for the stationary
distribution (e.g., Iosifescu, 1980, pp. 123−124).

Unfortunately, from a practical view, the Markov chain
approach has a significant deficiency. The dimension N
grows very rapidly with increases in the number of bits b
and/or the population size N. A perhaps more intuitive
estimate of the size of Npop can be obtained by Stirling’s
Approximation as follows:

2 1 1/ 2

pop
2 1 1 12 1 1

2 1 2 1

bNb

b b
NN

N N

−⎛ ⎞− ⎛ ⎞ ⎛
≈ π + + +⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎝ − ⎠ ⎝ − ⎠⎝ ⎠

⎞
⎟

Thus far, our analysis using the above approach has been
restricted to scalar θ systems (requiring fewer bits b than a
multivariate system) and low Npop.

7. COMPARATIVE ANALYSIS
7.1 Problem Statement and Summary of Efficiency

Theory for the Five Algorithms
This section uses the specific algorithm results in

Sections 2 to 6 above in drawing conclusions on the
relative performance of the five algorithms. There are
obviously many ways one can express the rate of
convergence, but it is expected that, to the extent they are
based on the theory outlined above, the various ways will
lead to broadly similar conclusions. We will address the
rate of convergence by focusing on the question:

With some high probability 1− ρ (ρ a small number),
how many L(⋅) function evaluations, say n, are needed
to achieve a solution lying in some “satisfactory set”
S(θ*) containing θ*?
With the random search algorithm in Section 2, we have

a closed form solution for use in questions of this sort while
with the SPSA, SAN, and EC algorithms of Sections 3
through 5, we must apply the existing asymptotic results,
assuming that they apply to the finite-sample question
above. For the GA, there is a finite sample solution using
the Markov chain approach. For each of the five
algorithms, we will outline below an analytical expression

useful in addressing the question. After we have discussed
the analytical expressions, we present a comparative
analysis in a simple problem setting for varying p.

Random Search
We can use (2.1) to answer the question above. Setting

the left-hand side of (2.1) to 1 − ρ and supposing that there
is a constant sampling probability P* = P(θnew(k) ∈ S(θ*)) ∀
k, we have

)1(log

log
*P

n
−
ρ

= . (7.1)

Simultaneous Perturbation Stochastic Approximation
From the fact that SPSA uses two L(θ*) evaluations per

iteration, the value n to achieve the desired probability for

kθ̂ ∈ S(θ*) is then
3)(22 ⎟

⎠
⎞

⎜
⎝
⎛

δ
σ

=
s
pdn

where from standard N(0, 1) distribution tables, there exists
a displacement factor, say d(p), such that the probability
contained within ± d(p) units contains probability amount
(1 − ρ)1/p. We are interested in the k such that 2d(p)σ/k1/3 =
δs = (the common length of a side in a p-fold

hypercube).

−+ − ii ss

Simulated Annealing
The value n to achieve the desired probability for
∈S(θkθ̂ *) is

21 2 ()log .
1

d pn
s

σ⎛ ⎞= ⎜ ⎟− γ δ⎝ ⎠

Evolutionary Strategy
As discussed in Section 6, the rate-of-convergence

results for algorithms of the evolutionary computation type
are not as well developed as for the other three algorithms
of this paper. Theorem 6.1 gives a general bound on
E[L() − L(θkθ̂ *)] for application of a (N, λ)-ES form of EC
algorithm to strongly convex functions. A more explicit
form of the bound is available for the (1, λ)-ES.
Unfortunately, even in the optimistic case of an explicit
numerical bound on E[L() − L(θkθ̂ *)], we cannot readily

translate the bound into a probability calculation for ∈
S(θ

kθ̂
*), as used above (and, conversely, the asymptotic

normality result on for SPSA and SAN cannot be

readily translated into one on L() since ∂L/∂θ = 0 at
θ

kθ̂

kθ̂
*⎯see, e.g., Serfling, 1980, pp. 122−124—although

Lehmann, 1983, pp. 338−339 suggests a possible means of
coping with this problem via higher-order expansions). So,
in order to make some reasonable comparison, let us
suppose that we can associate a set S(θ*) with a given
deviation from L(θ*), i.e., S(θ*) = S(θ*, ε) ={θ: L() −
L(θ

kθ̂
*) ≤ ε} for some prespecified tolerance ε > 0. As

presented in Rudolph (1997b), E[L() − L(θ)]≤ ckθ̂ k for
sufficiently large k, where c is the convergence rate in
Section 6. Then by Markov’s inequality,

1 − P(∈S(θkθ̂ *)) ≤
ε

θ−θ *)]()ˆ([LLE k ≤
ε

kc
, (7.2)

indicating that P(∈S(θkθ̂ *)) is bounded below by the ES

bounds mentioned in Section 5.
The full version of the paper employs Markov’s

inequality and the bound in Rudolph (1977b) to show that
there are λ evaluations of the fitness function for each
generation k so that n = λk, where

k =

⎥
⎦

⎤
⎢
⎣

⎡
λ−

ε−ρ

)/log(21log

)/1log(log

2 N
pQ

.

Genetic Algorithm
As mentioned in Section 6, while the GA has a relatively

clean theory that applies in both finite and asymptotic
samples, there are significant challenges in computing the
elements of the Markov transition matrix Π. The number of
possible states—corresponding to the number N of possible
populations—grows extremely rapidly with the number of
population elements N or the number of bits b. The
computation of the Npop × Npop transition matrix Π quickly
overwhelms even the most powerful current personal
computers.

Nevertheless, in principle, the Markov structure is
convenient for establishing a convergence rate for the GA.
The full version of the paper provides value for n.

7.2 Application of Convergence Rate Expressions for
Varying p

We now apply the results above to demonstrate relative
efficiency for varying p. Because the GA result is
computationally explosive as p gets larger (requiring a
larger bit string length and/or population size), we restrict
the comparison here to the four algorithms: random search,
SPSA, SAN and ES. Let Θ = [0, 1]p (the p-dimensional
hypercube with minimum and maximum θ values of 0 and
1 for each component). We want to guarantee with
probability 0.90 that each element of θ is within 0.04 units
of the optimal. Let the (unknown) true θ, θ*, lie in (0.04,
0.96)p. The individual components of θ* are . Hence, *

iθ

* * * * *
1 1 2 2

* *

() [0.04, 0.04] [0.04, 0.04] ...

[0.04, 0.04] .p p

S θ = θ − θ + × θ − θ + ×

× θ − θ + ⊂ Θ

Table 7.1 is a summary of relative efficiency for the
setting above for p = 2, 5, and 10; the efficiency was
normalized so that all algorithms performed equally at
p = 1, as described below. The numbers in Table 7.1 are the
ratios of the number of loss measurements for the given
algorithm over the number for the best algorithm at the
specified p; the highlighted values 1.0 indicate the best
algorithm for each of the values of p. To establish a fair
basis for comparison, we fixed the various parameters in
the expressions above (e.g., σ in SPSA and SAN, ρ for the
ES, etc.) so that the algorithms produced identical
efficiency results for p = 1 (requiring n = 28 measurements
to achieve the objective outlined above). These parameters
do not explicitly depend on p. We then use these parameter
settings as p increases.
Table 7.1. Ratios of loss measurements needed relative to

best algorithm at each p for 1 ≤ p ≤ 10
 p = 1 p = 2 p = 5 p = 10

Rand. Search 1.0 11.6 8970 2.0×109

SPSA 1.0 1.5 1.0 1.0
SAN 1.0 1.0 2.2 4.1
ES 1.0 1.9 1.9 2.8

Table 7.1 illustrates the explosive growth in the relative
(and absolute) number of loss evaluations needed as p
increases for the random search algorithm. The other
algorithms perform more comparably, but there are still
some non-negligible differences. For example, at p = 5,
SAN will take 2.2 times more loss measurements than
SPSA to achieve the objective of having inside S(θ*)
with probability 0.90. Of course, as p increases, all
algorithms take more measurements; the table only shows
relative numbers of function evaluations (considered more
reliable than absolute numbers).

kθ̂

This large improvement of SPSA and SAN relative to
random search may partly result from the more restrictive
regularity conditions of SPSA and SAN (i.e., for formal
convergence, SPSA assumes a several-times-differentiable
loss function) and partly from the fact that SPSA and SAN
work with implicit gradient information via gradient
approximations. The performance for ES is quite good. The
restriction to strongly convex fitness functions, however,
gives the ES in this setting a strong structure not available
to the other algorithms. It remains unclear what practical
theoretical conclusions can be drawn on a broader class of
problems.

REFERENCES
Arnold, D. V. (2002), Noisy Optimization with Evolution

Strategies, Kluwer, Boston.

Beyer, H.-G. (1995), “Toward a Theory of Evolution
Strategies: On the Benefits of Sex—the (µ/µ,λ) Theory,”
Evolutionary Computation, vol. 3, pp. 81−111.

Chin, D. C. (1997), “Comparative Study of Stochastic
Algorithms for System Optimization Based On Gradient
Approximations,” IEEE Transactions on Systems, Man,
and Cybernetics—B, vol. 27, pp. 244−249.

Dippon, J. and Renz, J. (1997), “Weighted Means in
Stochastic Approximation of Minima,” SIAM Journal on
Control and Optimization, vol. 35, pp. 1811−1827.

Gelfand, S. and Mitter, S.K. (1993), “Metropolis-Type
Annealing Algorithms for Global Optimization in Rd,”
SIAM Journal of Control and Optimization, vol. 31, pp.
111−131.

Gerencsér, L. (1999), “Convergence Rate of Moments in
Stochastic Approximation with Simultaneous
Perturbation Gradient Approximation and Resetting,”
IEEE Transactions on Automatic Control, vol. 44, pp.
894−905.

Gerencsér, L. and Vágó, Z. (2000), “SPSA in Noise-Free
Optimization,” in Proceedings of the American Control
Conference, pp. 3284−3288.

Iosifescu, M. (1980), Finite Markov Processes and Their
Applications, Wiley, New York.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983),
“Optimization by Simulated Annealing,” Science, vol.
220,
pp. 671−680.

Lehmann, E.L. (1983), Theory of Point Estimation, Wiley,
New York.

Maryak, J.L. and Chin, D.C. (2001), “Global Random
Optimization by Simultaneous Perturbation Stochastic
Approximation,” in Proceedings of the American
Control Conference, pp. 756−762.

Metropolis, N., Rosenbluth, A., Rosenbluth, M. Teller, A.
and Teller, E. (1953), “Equation of State Calculations by
Fast Computing Machines,” Journal of Chemical
Physics, vol. 21, pp. 1087−1092.

Qi, X. and Palmeiri, F. (1994), “Theoretical Analysis of
Evolutionary Algorithms with Infinite Population Size in
Continuous Space, Part I: Basic Properties,” IEEE
Transactions on Neural Networks, vol. 5, pp. 102−119.

Rappl, G. (1989), “On Linear Convergence of a Class of
Random Search Algorithms,” Zeitschrift für angewandt
Mathematik und Mechanik (ZAMM), vol. 69, pp. 37−45.

Rudolph, G. (1997a), Convergence Properties of
Evolutionary Algorithms, Kovac, Hamburg.

Rudolph, G. (1997b), “Convergence Rates of Evolutionary
Algorithms for a Class of Convex Objective Functions,”
Control and Cybernetics, vol. 26, pp. 375−390.

Rudolph, G. (1998), “Finite Markov Chain Results in
Evolutionary Computation: A Tour d’Horizon,”
Fundamenta Informaticae, vol. 34, pp. 1−22.

Serfling, R.J. (1980), Approximation Theorems of
Mathematical Statistics, Wiley, New York.

Spall, J. C. (1992), “Multivariate Stochastic Approximation
Using a Simultaneous Perturbation Gradient
Approximation,” IEEE Transactions on Automatic
Control, vol. 37, pp. 332–341.

Spall, J.C. (2000), “Adaptive Stochastic Approximation by
the Simultaneous Perturbation Method,” IEEE
Transactions on Automatic Control, vol. 45, pp.
1839−1853.

Spall, J. C. (2003), Introduction to Stochastic Search and
Optimization: Estimation, Simulation, and Control,
Wiley, Hoboken, NJ.

Stark, D. R. and Spall, J. C. (2001), “Computable Bounds
on the Rate of Convergence in Evolutionary
Computation,” in Proceedings of the American Control
Conference, pp. 918−922.

Suzuki, J. (1995), “A Markov Chain Analysis on Simple
Genetic Algorithms,” IEEE Transactions on Systems,
Man, and Cybernetics—B, vol. 25, pp. 655−659.

Wolpert, D. H. and Macready, W. G. (1997), “No Free
Lunch Theorems for Optimization,” IEEE Transactions
on Evolutionary Computation, vol. 1, pp. 67−82.

Yin, G. G. (1999), “Rates of Convergence for a Class of
Global Stochastic Optimization Algorithms,” SIAM
Journal on Optimization, vol. 10, pp. 99−120.

	Random Search
	Simultaneous Perturbation Stochastic Approximation
	Simulated Annealing
	Evolutionary Strategy
	Genetic Algorithm
	Rand. Search
	SPSA

